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Orientational order parameters in biaxial nematics: Polymorphic
notation

RICCARDO ROSSO*

Dipartimento di Matematica and CNISM, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy

(Received 4 October 2006; in final form 19 January 2007; accepted 21 January 2007 )

In this paper, a wealth of notations introduced in the past 30 years to denote second-rank
orientational order parameters for biaxial nematics are compared, stressing sources of
possible confusion. A unifying, intrinsic treatment of the second-rank orientational order
parameters is also presented, which does not suffer from the redundancy of the Saupe matrix
and is independent of the way in which rotations are parametrized.

1. Introduction

Biaxial nematics were predicted theoretically by Freiser

[1] who raised the question of the existence of a biaxial

nematic phase in analogy with the biaxial phase then

just observed in smectic C liquid crystals by Taylor et al.

[2]. Freiser started from the observation that the

traditional picture of nematogenic molecules as elon-

gated rods with D‘h symmetry about their long axes is

too simplistic, a more realistic description being that

where nematogenic molecules are lath-shaped, and so

have D2h symmetry. Following Williams [3], who

interpreted observations on the linear electro-optic

effect in PAA in terms of the molecular symmetry,

Freiser proposed that departure from D‘h molecular

symmetry could be responsible for a biaxial nematic

phase, and generalized the Maier–Saupe theory to

account for this effect. Before proceeding, two com-

ments are in order. First, although lath-like molecules

are a more faithful representation of nematogenic

molecules than rod-like molecules, in both models

molecules are conceived as rigid, which is a further

idealization of real nematogenic molecules that are

flexible. Secondly, the terms uniaxial and biaxial only

indirectly refer to molecular symmetry. In fact, these

terms are borrowed from the optics of anisotropic

media. An optically anisotropic material is said to be

uniaxial when there exists only one direction along

which a beam of linearly polarized light can travel

maintaining its state of polarization unaltered, while it

is said to be biaxial if there are two different directions

along which this property holds.

A biaxial nematic phase was first observed in a

lyotropic mixture by Yu and Saupe [4] in 1980, ten years

after the first theoretical predictions had been made. No

thermotropic biaxial liquid crystals had been found, a

possible explanation [5] being that freezing or the

appearance of smectic order preempt the transition to

the biaxial phase. The elusive biaxial phase in thermo-

tropic nematics was still sought by synthesizing

compounds with highly biaxial molecules. In fact, since

1986 several compounds were also claimed to exhibit a

biaxial phase (see [6] for an account on this topic), but

correctly detecting the fingerprint of the biaxial phase

turned out to be a rather delicate issue and most of the

techniques employed failed to prove unambiguously

that the observed phases were indeed biaxial. By

contrast, NMR spectroscopy has revealed that most

liquid-crystalline compounds supposed to provide

experimental evidence of biaxial phases yielded only

uniaxial phases [6]. In the absence of experimental

verifications, the theoretical predictions made in the

1970s could be tested by computer simulations. From

the wide literature in this field, I simply quote a few

papers that opened the way to simulations for biaxial

liquid crystals: Luckhurst and Romano [7] performed a

Monte Carlo simulation for a lattice model that

generalized the Lebwohl–Lasher model to biaxial

molecules; Allen [8] obtained a phase diagram for hard

biaxial ellipsoids; Berardi et al. [9] proposed a modifica-

tion of the Gay–Berne intermolecular potential tailored

on biaxial particles. In the sequel, papers concerning

simulations are quoted only when they contain original

definitions of second-rank orientational order para-

meters. An updated account on computer simulations in

liquid crystals has been given by Care and Cleaver [10].*Corresponding author. Email: riccardo.rosso@unipv.it
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Recently, there has been a surge of interest in

biaxial nematics both at the experimental and at the

theoretical level. From the experimental point of view

several reports appeared where thermotropic liquid

crystals formed by new classes of molecules – flat

molecules tied to polymer chains [11], bent-core (V-

shaped) molecules [12, 13], and tetrapodes [14] – seem

to produce biaxial phases. Although there are strong

arguments suggesting that the observed phases are

indeed biaxial – in particular, 2H NMR spectroscopy

was used in [12] to check biaxiality – words of

caution have been used for the interpretation of the

results [15, 16] since there are some debated issues

concerning the origin of the observed biaxiality; see

also the discussion in [17, 18].

At the theoretical level, Straley’s quadrupolar model

[19] has been revisited [20] and new perspectives have

been disclosed since a direct transition from the

isotropic to the biaxial phase along a transition line –

and not only at an isolated Landau point, as in Straley’s

paper – has been predicted when the parameters of the

model are suitably selected [21]. This renewed impetus

in biaxial nematics justifies a systematic comparison of

the notations employed to denote the second-rank

orientational order parameters describing a biaxial

phase made of rigid biaxial molecules. In fact, the

number of different notations used to denote the same

set of order parameters and the number of different

prefactors in the definitions of order parameters is

astonishingly large. The survey made in this paper

identifies as many as 30 notations that differ either by

the symbols chosen for a given set of order parameters

or by some numerical prefactors that lead to equivalent

but different sets of order parameters. This notational

polymorphism is disturbing as it makes comparisons

among results scattered in the literature quite difficult.

In some sense the polymorphism of second-rank

orientational order parameters is inherent to the

mathematical tools employed to introduce them: Euler

angles and Wigner matrices. Both tools are employed to

parametrize the rotation that carries an orthonormal

triad fixed in the laboratory into an orthonormal triad

associated with the molecule. Two main notations have

been used to denote Euler angles, the x- and the y-

notation, and both entered the definition of biaxial

order parameters. If the notation is not specified, an

ambiguity in the sign of some order parameter occurs.

Similarly, several notations on Wigner matrices have

been proposed in the past (see p. 21 of [22] or Appendix

F of [23]). However, while general tables of conversions

exist for both Euler angles and Wigner matrices, no

such systematic effort has been made to compare the

proposals put forward for second-rank orientational

order parameters in biaxial nematics. This is the first

aim of our paper.

As mentioned above, most confusion arises when

parameterizations are introduced to define second-rank

orientational order parameters. Hence, it is important to

find an intrinsic way to define them. One way could be

the use of the Saupe – or ordering – matrix which,

however, is redundant. A more concise treatment can be

achieved if a set of symmetric traceless molecular tensors

are orientationally averaged and then projected onto

another set of symmetric, traceless macroscopic tensors.

Providing such an intrinsic definition is the second aim

we pursue in this paper, which is organized as follows. In

Section 2 the general procedure put forward by Zannoni

[24] to define orientational order parameters in liquid-

crystalline phases is recalled. This general treatment can

be simplified when attention is focussed only on second-

rank order parameters, which are defined in a parameter-

free way in Section 3 by two different approaches: the

former makes use of the Saupe matrix, while the latter is

based on projections upon sets of symmetric, traceless

tensors. Section 4 contains a synopsis of the different

notations employed to represent the set of second-rank

order parameters that describe biaxial nematics. Finally,

in Appendix A we recall the basic notations employed to

introduce Euler angles.

2. Orientational order parameters

In this section we sketch a systematic procedure to

obtain the orientational order parameters for liquid

crystals that was introduced long ago by Zannoni in [24]

and that employs Euler angles to parametrize a

rotation. While we refer the interested reader to

Appendix A for some remarks on the definition and

the notations adopted for Euler angles, here we merely

state that we indicate them as (Q, q, y) (figure 1),

following the y-notation employed, for instance, by

Brink and Satchler [22] and by Rose [25].

We shall limit attention to idealized, rigid nemato-

genic molecules, disregarding the effects of molecular

flexibility. In general, flexibility is accounted for by

adding to the Euler angles a set of torsional angles

describing the relative orientations of the rigid subunits

that form a molecule (see Section D of [26]). In the

following, we call a molecule uniaxial if it has D‘h

symmetry, while we call a molecule biaxial if it has D2h

symmetry. Nematic phases have been predicted and

observed for molecules having lower symmetry, like C2v,

D2, C2h, and Ci [27, 28]. We will mention these classes of

molecules in Section 3 to discuss the impact of lower

molecular symmetry on the set of meaningful

order parameters. Let P(1)(r, V) be the one-particle

distribution function depending on the position r of the
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molecule and on the set V;(Q, q, y) of Euler angles

describing – in the y-notation – the molecular orienta-

tion with respect to an orthonormal frame that is fixed

in the laboratory. P(1)(r, V) is the probability of finding

a molecule at position r, oriented like V. The singlet

orientational distribution function f(V) is obtained by

averaging P(1)(r, V) over r

f Vð Þ :~
1

N

ð
dr P 1ð Þ r, Vð Þ, ð1Þ

where N is the number of molecules in the sample. If the

system is invariant under translation, as in the case of

nematic liquid crystals, then

f Vð Þ~ 1

%
P 1ð Þ Vð Þ,

where r )N/V is the number density and V is the

volume occupied by the sample. The ensemble average

<A>o of any function A(V) can be then written as (p. 61

of [24])

SATo :~

ð
f Vð ÞA Vð ÞdV, ð2Þ

where the subscript ‘o’ reminds us that only the

orientational variables are involved in the averaging

process. The invariant measure dV is expressed in terms

of Euler angles as dV5sin qdqdQdy. We know from

statistical mechanics (see pp. 30–31 of [29]) that averages

of one-particle properties g(r, V) can be expressed as

SgTpo~
1

N

ð
g r, Vð ÞP 1ð Þ r, Vð Þdr dV,

where the subscript po has been used to recall that

averaging involves both positional and orientational

variables.1 Clearly, <g>po;<g>o if g(r, V)5g(V). If the

orientational distribution function f is smooth, it can be

expanded on the basis of Wigner rotation matrices

Dl
mn Vð Þ that form an orthogonal set of functions since

ð
Dl

mn Vð ÞDl0�
m0n0 Vð ÞdV~

ð2p

0

dy

ð2p

0

dQ

ðp

0

sin qdqDl
mn Vð ÞDl0�

m0n0 Vð Þ~
8p2

2lz1
dll0dmm0dnn0 ,

for all integer or half-integer l and for all m, n52l, 2l+1,

…, l21, l. The asterisk * denotes complex conjugation.

Thus,

f Vð Þ~
Xz?

l~0

Xl

m~{l

Xl

n~{l

flmnDl
mn Vð Þ ð3Þ

where the coefficients flmn can be determined by multi-

plying both sides of (3) by Dl�
mn and integrating on all the

orientations V:

flmn~
2lz1ð Þ
8p2

SDl�
mnTo: ð4Þ

The averages SDl
mnTo are the orientational order para-

meters of rank l. We record here the expression of Dl
mn:

Dl
mn Vð Þ~Dl

mn Q, q, yð Þ :~e{i mQznyð Þdl
mn qð Þ ð5Þ

where i is the imaginary unit and

dl
mn qð Þ :~

X
t

{1ð Þt lzmð Þ! l{mð Þ! lznð Þ! l{nð Þ!½ �1=2

lzm{tð Þ! l{n{tð Þ!t! tzn{mð Þ!

cos
q

2

� �2lzm{n{2t

sin
q

2

� �2tzn{m

,

ð6Þ

Figure 1. Sketch of the Euler angles {Q, q, y} carrying the
orthonormal frame {ex, ey, ez} into the orthonormal frame
{e0x, e0y, e0z}. Both the x-notation {Qx, qx, yx} and the y-
notation {Qy, qy, yy} are shown. Here Q denotes the angle of
precession, q the angle of nutation, and y the angle of proper
rotation. The first rotation is through an angle Q about ez; it
maps the x-axis into the nodal line – where the {ex, ey} and the
{e0x, e0y} planes intersect – directed along the unit vector u. The
second rotation is about the dashed line – orthogonal to both
ez and u – through an angle q. It maps ez into e0z and the nodal
line into the line directed along u9. A third rotation about e0z
through an angle y completes the transformation from {ex, ey,
ez} into {e0x, e0y, e0z}.

1 The notation used here departs from that adopted by
Zannoni [24] where :ð Þ is used for <?>o and <?> is used for
<?>po.
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are the reduced rotation matrices or small Wigner

matrices (see p. 22 of [22]). In equation (6) summation

is restricted to the integer values of t that make the

argument of all factorials non-negative. For our devel-

opment, only the reduced matrices with l52 are

important, that is (see p. 24 of [22])

d2
00 qð Þ~ 1

2
3 cos2q{1
� �

,

d2
20 qð Þ~d2

{20 qð Þ~d2
02 qð Þ~d2

0{2 qð Þ~
ffiffiffi
3

8

r
sin2q,

d2
22 qð Þ~d2

{2{2 qð Þ~cos4 q

2

� �
~

1

4
1zcos qð Þ2,

d2
2{2 qð Þ~d2

{22 qð Þ~sin4 q

2

� �
~

1

4
1{cos qð Þ2:

ð7Þ

For any fixed value of l, there exist (2l+1)2

orientational order parameters of rank l. The number

of independent order parameters can be reduced,

however, by resorting to the symmetry properties of

both the mesophase and the molecules. In particular,

if both the molecules and the mesophase are biaxial,

the relevant second-rank orientational order para-

meters are

SD2
00,T ReSD2

02T~ReSD2
0{2T,

ReSD2
20T~ReSD2

{20T,

Re SD2
22TzSD2

{22T
� �

~Re SD2
2{2TzSD2

{2{2T
� �

which, by resorting to equations (5) and (7), can be

given the form

SD2
00T~S

1

2
3 cos2q{1
� �

T~SP2 cos qð ÞT,

ReSD2
0+2T~

ffiffiffi
3

8

r
Ssin2 q cos 2yT

ReSD2
+20T~

ffiffiffi
3

8

r
Ssin2 q cos 2QT,

and

Re SD2
22TzSD2

{22T
� �

~

S
1

2
1zcos2 q
� �

cos 2Q cos 2y{cos q sin 2Q sin 2yT,

where P2 denotes the second Legendre polynomial.

Here and in the following, we omit the subscript ‘o’

since we are concerned only with orientational

averages, and so no risk of confusion arises. This

set of order parameters can be expressed in terms

of the set of symmetry-adapted functions D 2ð Þ
m, n

introduced by Mulder [30]

D
2ð Þ

0, 0 Vð Þ :~
1

2
3 cos2 q{1
� �

,

D
2ð Þ

0, 2 Vð Þ :~

ffiffiffi
3
p

2
sin2 q cos 2y,

D
2ð Þ

2, 0 Vð Þ :~

ffiffiffi
3
p

2
sin2 q cos 2Q,

D
2ð Þ

2, 2 Vð Þ :~
1

2
1zcos2 q
� �

cos 2Q cos 2y{cos q sin 2Q sin 2y,

ð8Þ

that belong to the larger family of symmetry-adapted

functions D lð Þ
m, n defined as

D lð Þ
m, n Vð Þ :~

ffiffiffi
2
p

2

 !2zdm, 0zdn, 0X
s, s0~ {1, 1f gDl

sm, s0n Vð Þ,

with l even, 0ƒm, nƒl, even or,

with l odd, 2ƒm, nƒl, even:

ð9Þ

The set of functions (8) is denoted as F
2ð Þ

mn by Fiałkowski

et al. [31] and by Kapanowski [32], as E2
mn by Kapanowski

and Wietecha [33], as Q2
mn by Camp and Allen [34], and

as Qmn by Hołyst and Poniewierski [35]. A different

normalization is introduced in [36–38] where the follow-

ing set of symmetry-adapted functions is employed:

R2
00 :~

3

2
cos2 q{

1

2
~D

2ð Þ
0, 0

R2
20 :~

ffiffiffi
3

8

r
sin2 q cos 2Q~

1ffiffiffi
2
p D

2ð Þ
2, 0

R2
02 :~

ffiffiffi
3

8

r
sin2 q cos 2y~

1ffiffiffi
2
p D

2ð Þ
0, 2

R2
22 :~

1

4
1zcos2 q
� �

cos 2Q cos 2y{

1

2
cos q sin 2Q sin 2y~

1

2
D

2ð Þ
2, 2:

ð10Þ

In [39], Romano makes a distinction between the

parameters R2
mn, which refer to the rotation from a

molecule-based frame to a laboratory frame that is the

eigenframe of a tensorial property of the liquid crystal,

and the parameters K2
mn where the laboratory-based

frame is left unspecified.

Finally, we note that Mulder introduced the functions

D lð Þ
m, n of equation (9) for even values of l, while Fiałkowski

et al. [31] realized that also odd values of l yield

combinations of Wigner matrices with the required D2h

symmetry.

Historically, the first systematic definition of the

orientational order parameter in a uniaxial phase is due to

Buckingham [40] who expanded the singlet distribution

function f(V) of a molecule in terms of the direction cosines
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of the preferred direction in a Cartesian frame. We do not

enter into the details of this approach here; the interested

reader is referred to the original paper [40] and to p. 68 of

[24]. We only note that, when defined in this way, the

second-rank orientational order parameters involve the

Saupe ordering matrix, which we are going to introduce.

3. Second-rank orientational order parameters

Wigner matrices provide a compact formalism to deal

with orientational order parameters, and for this reason

they are a favourite among theoreticians. On the other

hand, the derivation of order parameters in terms of the

Saupe ordering matrix is a favourite among experi-

mentalists, especially for second-rank orientational

order parameters since, for instance, the outcomes of

NMR experiments can be directly restated in terms of

this matrix defined as (cf. p. 45 of [41])

S
ab
ij :~

1

2
S3 mi

:
að Þ mj

:
b

� �
{dijdabT

~
1

2
S3 mi6mj

� �
:

a6 b

� �
{ mi6 að Þ: mj6 b

� �
T

for i, j, a, b~1, 2, 3:

ð11Þ

where {m1, m2, m3} is an orthonormal triad associated

with a molecule, and { 1, 2, 3} is an orthonomal triad

defined in the laboratory. The matrix in (11) has a high

redundancy since, by exploiting the symmetries of S
ab
ij

and the fact that only scalar products between unit

vectors enter in (11), only 25 among the 81 elements of

(11) are independent [42]. Further reductions can be

made when the matrix describes molecules and phases

that are both biaxial. Let us assume that {m1, m2, m3} are

chosen along the axes of molecular symmetry, with the

stipulation that m1 lies along the shortest axis, and m3 lies

along the longest axis. Similarly, let { 1, 2, 3} be a lab-

based frame with the unit vectors along the principal axes

of a tensorial property of the liquid crystal like, for

instance, the dielectric tensor e [20]. The axes { 1, 2, 3}

can be labelled by taking 1 in the eigenspace associated

with the smallest eigenvalue of e and 3 in the eigenspace

associated with the largest eigenvalue of e. If a and b are

fixed, the elements of (11) with i?j change their sign if

one of the molecular vectors m1, m2, m3 is mapped into its

opposite. Since we are concerned with biaxial molecules

that are clearly invariant against this change, only

elements like S
ab
ii are different from zero, while the

remaining elements vanish because of the symmetry of

the distribution function involved in the averaging

process used in equation (11). Similarly, if the phase is

biaxial, the Saupe matrix computed in the frame { 1, 2,

3} should be unaffected by mapping i into 2 i.

Elements like S
ab
ii with a?b change their sign under such

transformation and so they have to vanish in a biaxial

phase. We then conclude that only the nine diagonal

elements Saa
ii can be used in the description of a biaxial

phase formed by biaxial molecules. However, by defini-

tion, the following constraints must be satisfied [41, 43]

X3

a~1

Saa
ii ~

X3

i~1

S
aa

ii ~0;

it is not difficult to check that only four elements of the

Saupe matrix are needed to express all the diagonal

elements.

The reader will note that a specific tensorial property,

the dielectric tensor e, has been selected to introduce

and to label the axes { 1, 2, 3}. As noted in [26] this is

a major difference between uniaxial and biaxial phases

consisting of biaxial molecules, since only in the former

case ‘the director is uniquely associated with the

symmetry axis of any second rank property’ (p. 71 of

[26]). Labelling the axes in a particular way is a matter

of convention. Besides the proposal made here, another

possibility adopted in the literature is the following. Let

us consider, according to [26], the magnetic suscept-

ibility x of the phase as the relevant second-rank

tensorial property and let (X, Y, Z) denote its principal

axes. Then, the axes are labelled so that the eigenvalues

xXX, xYY and xZZ of x satisfy

xZZj jwxXX {xYY w0:

In other terms, Z is approximately an axis of symmetry

for x while the remaining axes are labelled so that the

biaxiality of x is positive.

Here, we propose an intrinsic way to arrive at the

second-rank order parameters, that is, a way indepen-

dent of any parametrization in terms of Euler angles

and that, unlike the Saupe matrix, is not affected from

redundancy. The approach followed here is a systematic

presentation of ideas developed in the Appendix of [44],

as well as in [45] and [46]. Following [47, 48], we

associate to each molecule an orthonormal basis

spanning the five-dimensional linear space of sym-

metric, traceless tensors

M0 :~

ffiffiffi
3

2

r
m36m3{

1

3
I

� 	

M1 :~
1ffiffiffi
2
p m16m1{m26m2½ �

M2 :~
1ffiffiffi
2
p m16m2zm26m1½ �

M3 :~
1ffiffiffi
2
p m16m3zm36m1½ �

M4 :~
1ffiffiffi
2
p m26m3zm36m2½ �:

ð12Þ

Orientational order parameters 741
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Similarly, we introduce five symmetric, traceless tensors

{L0, …, L4} defined in terms of { 1, 2, 3}. Let Sym0m

be the five-dimensional vector space of symmetric,

traceless, molecular tensors and Sym0L its laboratory-

based counterpart. We define a linear mapping S:

Sym0m¨Sym0L as

S Mð Þ :~SMT:

Clearly, the mapping S is a fourth-rank tensor and, by

fixing orthonormal bases {M0, …, M4} and {L0, …, L4}

in Sym0m and Sym0L, 25 components Sia are needed to

specify the action of S. In Sia, i is a molecular index,

while a is a laboratory index and we can write

S M ið Þ~
X4

a~0

SiaLa:

Since the tensors {L0, …, L4} are orthonormal with

respect to the standard scalar product

T:L :~trTTL

between second-rank tensors T and L, by exploiting the

definitions (11) and (12) we can readily find the relation

between the coefficients Sia and the entries of the Saupe

ordering matrix (11):

S00~S33
33 , S01~

1ffiffiffi
3
p S11

33{S22
33

� �
, S02~

2ffiffiffi
3
p S12

33 , S03~
2ffiffiffi
3
p S13

33 , S04~
2ffiffiffi
3
p S23

33

S10~
1ffiffiffi
3
p S33

11{S33
22

� �
, S11~

S11
11{S22

11{S11
22{S22

22

� �
3

, S12~
2

3
S12

11{S12
22

� �
,

S13~
2

3
S13

11{S13
22

� �
, S14~

2

3
S23

11{S23
22

� �

S20~
2ffiffiffi
3
p S33

12 , S21~
2

3
S11

12{S22
12

� �
, S22~

2

3
S12

12zS21
12

� �
,

S23~
2

3
S13

12zS31
12

� �
, S24~

2

3
S23

12zS32
12

� �

S30~
2ffiffiffi
3
p S33

13 , S31~
2

3
S11

13{S22
13

� �
, S32~

2

3
S12

13zS21
13

� �
,

S33~
2

3
S13

13zS31
13

� �
, S34~

2

3
S23

13zS32
13

� �

S40~
2ffiffiffi
3
p S33

23 , S41~
2

3
S11

23{S22
23

� �
, S42~

2

3
S12

23zS21
23

� �
,

S43~
2

3
S13

23zS31
23

� �
, S44~

2

3
S23

23zS32
23

� �
:

We stress that only M0, M1, L0, and L1 do not change

their sign if one vector of either the molecular or the

laboratory frame is mapped into its opposite. Hence,

the averages of Mi, with i52, 3, 4 vanish identically for

an assembly of biaxial molecules with symmetry group

D2h. The same is true for V-shaped molecules with

symmetry group C2v [27] but it is false for molecules

with lower symmetry. For instance, for molecules with

point group C2h, <M2> can be different from 0, if m3

coincides with the normal to the plane of symmetry of

the molecule. Further lack of symmetry could lead to a

non-zero average also for M3 and M4. Hereafter, we

restrict attention to mesogens endowed with point

group D2h or C2v. The coefficients of the expansion of

<M0> and <M1> along L2, L3, and L4 cannot serve as

order parameters for a biaxial phase, as they change

sign when one of the unit vectors i is mapped into its

opposite. Hence, the biaxial symmetry of the phase

makes it possible to use as scalar order parameters the

four coefficients S;S00, P;S01, M;S10, and F;S11 that

satisfy

SM0T~SL0zPL1

SM1T~UL0zFL1;



ð13Þ

in other words, we see that biaxial symmetry makes it

possible to diagonalize simultaneously <M0> and

<M1>. By definition, we have

S :~SM0
:L0T~

3

2
S 3

:m3ð Þ2{ 1

3
T, ð14Þ

U :~SM1
:L0T~

ffiffiffi
3
p

2
S m1

:
3ð Þ2{ m2

:
3ð Þ2T, ð15Þ

P :~SM0
:L1T~

ffiffiffi
3
p

2
S m3

:
1ð Þ2{ m3

:
2ð Þ2T, ð16Þ

and

F : ~SM1
:L1T~

1

2
S m1

:
1ð Þ2{ m1

:
2ð Þ2{ m2

:
1ð Þ2z m2

:
2ð Þ2T,

ð17Þ

which directly follows from (12). The parameters
defined in equations (14)–(17) can be expressed in terms
of the Saupe matrix as

S~S33
33 U~

1ffiffiffi
3
p S33

11{S33
22

� �

P~
1ffiffiffi
3
p S11

33{S22
33

� �
F~

1

3
S11

11{S22
11{S11

22zS22
22

� �
:

8>>><
>>>:

With little more labour, it is possible to express all

diagonal elements Saa
ii of the Saupe matrix in terms of

the parameters S, U, P, and F as [46]

S33
33~S S22

33~
1
2

{S{
ffiffiffi
3
p

P
� �

S11
33~

1
2

{Sz
ffiffiffi
3
p

P
� �

S33
22~

1
2

{S{
ffiffiffi
3
p

U
� �

S22
22~

1
4

Sz
ffiffiffi
3
p

Pz
ffiffiffi
3
p

Uz3F
� �

S11
22~

1
4

S{
ffiffiffi
3
p

Pz
ffiffiffi
3
p

U{3F
� �

S33
11~

1
2

{Sz
ffiffiffi
3
p

U
� �

S22
11~

1
4

Sz
ffiffiffi
3
p

P{
ffiffiffi
3
p

U{3F
� �

S11
11~

1
4

S{
ffiffiffi
3
p

P{
ffiffiffi
3
p

Uz3F
� �

:

ð18Þ

If the molecules are uniaxial, there is no way to

distinguish m1 from m2, and so U and F vanish

identically. If the phase is uniaxial too, only 3 plays a

distinguished rôle in the laboratory frame and so S is

the unique surviving order parameter. If we consider

biaxial molecules in a uniaxial phase, U is different from
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zero. On the other hand, if the phase is biaxial P enters

the scene also when the molecules are uniaxial. Finally,

the order parameter F is different from zero when both

the molecules and the phase are biaxial. The notation

adopted here for order parameters needs some explana-

tion. The choice of S is a homage to tradition. Then I

used P for the order parameter that measures Phase

biaxiality in the presence of uniaxial molecules. The

parameter U measures molecular biaxiality in a uniaxial

phase and so can be considered as a Uniaxial parameter.

Finally, F is different from 0 when biaxiality is Fully

displayed, both at the molecular and at the phase level.

The normalizing factors adopted here clearly depend on

the definition (13). As a result, we cannot guarantee

that, for instance, the upper bound on all the order

parameters is 1 when there is perfect order. This latter

criterion led, for instance, Straley in his definition (see

p. 1882 of [19]).

Since labelling the molecular and the laboratory axes

as we did is purely conventional, in the spirit of [49] we

can study the action on the traceless tensors M0, …, M4

and L0, …, L4 of the permutation operators ti, (i51, 2,

3) that keep the i-th unit vector in either {m1, m2, m3} or

{ 1, 2, 3} fixed and exchange the remaining two unit

vectors. It is readily verified that

t1 M0ð Þ~
ffiffiffi
3

2

r
m26m2{

1

3
I

� 	
~{

1

2
M0{

ffiffiffi
3
p

2
M1,

t1 M1ð Þ~
ffiffiffi
1

2

r
m16m1{m36m3½ �~{

ffiffiffi
3
p

2
M0z

1

2
M1,

t1 M2ð Þ~M3, t1 M3ð Þ~M2, t1 M4ð Þ~M4,

t2 M0ð Þ~{
1

2
M0z

ffiffiffi
3
p

2
M1, t2 M1ð Þ~

ffiffiffi
3
p

2
M0z

1

2
M1,

t2 M2ð Þ~M4, t2 M3ð Þ~M3, t2 M4ð Þ~M2,

and

t3 M0ð Þ~M0, t3 M1ð Þ~{M1 t3 M2ð Þ~M2,

t3 M3ð Þ~M4, t3 M4ð Þ~M3:

It is interesting to note that the permutation

operators ti decompose the space of symmetric, trace-

less tensors into the direct sum of the linear subspaces

spanned by {M0, M1} and by {M2, M3, M4}. Since a

similar decomposition also holds in the laboratory

frame {L0, …, L4}, we conclude that the description of a

biaxial phase is unaffected by axes relabelling, since it

only requires combinations of {M0, M1} and {L0, L1}.

Axes relabelling simply shuffles the set of order

parameters (S, U, P, F) into some equivalent, though

often less transparent, set. For instance, the action of t3

on both the molecular and the laboratory frames maps

(S, U, P, F) into (S, 2U, 2P, F); it is precisely this

mapping that makes it possible to compare Straley’s

order parameters – defined by use of the x-notation

for Euler angles – with those defined using the y-

notation (see also [50] and [51]). For a less trivial

example, we record here that the action of t1 on both

frames maps

S. 1
4

Sz
ffiffiffi
3
p

Pz
ffiffiffi
3
p

Uz3F
� �

, U. 1
4

ffiffiffi
3
p

Sz3P{U{
ffiffiffi
3
p

F
� �

,

P. 1
4

ffiffiffi
3
p

S{Pz
ffiffiffi
3
p

U{3F
� �

, F. 1
4

3S{
ffiffiffi
3
p

P{
ffiffiffi
3
p

UzF
� �

:

Finally, the order parameters S, U, P, F range in the
following intervals [52]

S[ { 1
2

, 1
� �

, U[ { 1ffiffi
3
p 1{Sð Þ, 1ffiffi

3
p 1{Sð Þ

h i
,

P[ { 1ffiffi
3
p 1{Sð Þ, 1ffiffi

3
p 1{Sð Þ

h i
F[ Fm, FM½ �,

ð19Þ

where

Fm :~{
1

3
min 2zSz

ffiffiffi
3
p

PzUð Þ, 2zSz
ffiffiffi
3
p

U{Pð Þ
n o

and

FM :~
1

3
min 2zSz

ffiffiffi
3
p

U{Pð Þ, 2zSz
ffiffiffi
3
p

P{Uð Þ
n o

:

In particular, the bounds for F obtained in [52] improve

the earlier limitation F g [21, 1] found in [20].

Until now, we did not parametrize the rotation

mapping the director frame { 1, 2, 3} into the

molecular frame {m1, m2, m3}. Let Q, q, and y be the

Euler angles associated to this rotation (see figure 1),

defined according to the y-notation. Then we have (see

p. 607 of [53])

m1~ cos q cos Q cos y{sin Q sin yð Þ 1

z cos q sin Q cos yzcos Q sin yð Þ 2{sin q cos y 3,

m2~{ cos q cos Q sin yzsin Q cos yð Þ 1z

cos Q cos y{cos q sin Q sin yð Þ 2zsin q sin y 3,

and

m3~sin q cos Q 1zsin q sin Q 2zcos q 3

from which it follows that

S~
1

2
S 3 cos2 q{1
� �

T~SD2
0, 0T

U~

ffiffiffi
3
p

2
Ssin2 q cos 2yT~

ffiffiffi
2
p

ReSD2
0+2T

P~

ffiffiffi
3
p

2
Ssin2 q cos 2QT~

ffiffiffi
2
p

ReSD2
+20T

F~S
1

2
1zcos2 q
� �

cos 2Q cos 2y{cos q sin 2Q sin 2yT

~Re SD2
22TzSD2

{22T
� �

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð20Þ
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4. Notations for second-rank order parameters

This section contains a table of conversion for a wealth

of notations employed in the literature to denote the

second-rank order parameters defined in Section 3. Any

row contains the notations employed to denote the

order parameters S, U, P, and F defined through

equations (14)–(17) and (20). The first row corresponds

to the most recent, the last row to less recent notation. I

consider two notations as different when either two

order parameters differ at least by a constant multiple,

or when different symbols are employed for the same set

of order parameters. An empty cell mean that the

corresponding order parameter is not defined by the

authors. This happens when attention is confined to

either uniaxial particles in a biaxial phase or biaxial

particles in a uniaxial phase.

Looking at table 1, it turns out that two different

symbols <?> and ? have been adopted to denote one and

the same orientational average, defined according to

equation (2).2 In table 1, I put a ¡ in front of the order

parameters corresponding to P or U whenever the

authors do not specify whether they use the x- or the y-

notation for Euler angles. As mentioned above, such

discrepancies can be absorbed by different labelling of

the vectors {m1, m2, m3} or { 1, 2, 3}.

Table 1 does not contain notations employed, for

instance, in [1, 75–77]. At variance with most papers in

the literature, these authors did not express a sym-

metric, traceless tensor in terms of either {Mi} or {Li},

and so only two order parameters were employed that

mix the sources of biaxiality. To compare this approach

with that described in Section 3, we now rephrase

Freiser’s procedure [1, 75] in the language of Section 3.

The molecular axes {m1, m2, m3} associated to a

reference molecule are placed along the principal axes of

a symmetric, traceless, second rank tensor Q, called the

quasi-quadrupole tensor, in terms of which the effective

interaction energy wij between the i-th (reference)

molecule and the j-th molecule is written as

wij52Q?RQRT, where R is the orthogonal tensor

associated with the rotation carrying the axes of the i-

th into those of the j-th molecule. The tensor Q is then

written as

Q~ 2q{

ffiffiffi
2

3

r
Q

 !
m16m1{ 2qz

ffiffiffi
2

3

r
Q

 !
m26m2

z2

ffiffiffi
2

3

r
Qm36m3~2 QM0z

ffiffiffi
2
p

qM1

� �
,

where Q and q are the spherical components of the

tensor Q (see, e.g. Appendix B of [78]). To obtain the

order parameters Q̄0 and Q̄2, the orientational average

<Q> of Q is then projected along L0 and L1, arriving at

QQ0~2 QSz
ffiffiffi
2
p

qU
� �

QQ2~2 QPz
ffiffiffi
2
p

qF
� �

from which we see that Q̄0 is a uniaxial parameter which

is proportional to S when the molecules are uniaxial,

while Q̄2 measures phase biaxiality.3 As noted before,

the order parameters S, U, P, and F are mixed in this

description. They could be formally singled out by

setting qu )2QM0 and qb :~2
ffiffiffi
2
p

qM1 from which we

arrive at

S~
Squ

:L0T
2Q

, U~
Sqb

:L0T
2q

ffiffiffi
2
p ,

P~
Squ

:L1T
2Q

, and F~
Sqb

:L1T
2q

ffiffiffi
2
p :

Remler and Haymet [76] followed the same avenue as

Freiser [1, 75] using a slightly different notation, since

they introduce a degree of biaxiality r )q/Q and define

the order parameters A0 and A2 as

A0~2 Szr
ffiffiffi
2
p

U
� �

and A2~2
1

r
Pz

ffiffiffi
2
p

F

� �
:

A common feature of these approach is the use of

Wigner matrices. A slightly different procedure that

avoids them was employed by Boccara et al. [77]. Here,

a molecular tensor q is written as

q~q {
ffiffiffi
6
p

M0ze
ffiffiffi
2
p

M1

� �

and two order parameters a and b are introduced such

that

SqT~q {a
ffiffiffi
6
p

L0zb
ffiffiffi
2
p

L1

� �
,

from which, by resorting to equations (14)–(17), we

2 Precisely, Collings et al. [71, 72] consider <?> as a time
average, instead of an ensemble average, since NMR
measurements involve precisely time averages. The two
averages are conceptually quite different from one another
and an ergodic hypothesis should be invoked – and proved –
to be sure that they produce the same results. Mettout [27]
claims that his averages coincide with those employed in [71],
and excludes the factor 5p2/16 from orientational averages.
Here, we consider both <?> and :ð Þ as equivalent notations for
ensemble averages.

3 Precisely, the parameters Q̄0 and Q̄2 defined here are
proportional to that introduced by Freiser, who did not use
the normalizing factors in L0 and L1. A similar remark holds
for the order parameters A0 and A2 introduced by Remler and
Haymet [76].
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Table 1. The second-rank order parameters S, U, P, and F introduced in equations (14)–(17) and (20) are expressed in terms of
notations employed in the past three decades. Notations are arranged in order of appearance, from most recent (top) to less recent
(bottom). An empty cell occurs when the corresponding order parameter is not defined.

This paper S U P F

Bates & Luckhurst [42] S2
00

1ffiffi
3
p S2

02
1ffiffi
3
p S2

20
1
3

S2
22

Mettout [27] 16p2

5
g0

16p2

5
g2

16p2

5
g00

16p2

5
g02

Aver’yanov [54] S 1ffiffi
3
p G

Romano [43] R20 2
ffiffiffi
2
p

R22

Sonnet et al. [20] S 1ffiffi
3
p S0

ffiffiffi
3
p

T T9

Low [55] S { 2ffiffi
3
p j

Zhang et al. [56] <P2(cos b)>
ffiffiffi
2
p

SB b, cð ÞT
Singh [57] P̄2 ḡ2 m̄2 t̄2

Dunmur & Toriyama [58] S 1ffiffi
3
p D 1ffiffi

3
p P C

3

Teixeira et al. [59] s1

ffiffi
3
p

2
s3

ffiffi
3
p

2
s2

s4

Kröger, Sellers [60] S2

ffiffi
3
p

2
b

Sarman [61] Q
2ð Þ

00

ffiffiffi
2
p

Q
2ð Þ

0, 2

ffiffiffi
2
p

Q
2ð Þ

2, 0 Q
2ð Þ

2, 2

Biscarini et al. [36] SR2
00T S

ffiffiffi
2
p

R2
02T S

ffiffiffi
2
p

R2
20T S2R2

22T

Osipov & Pikin [45, 62] S 1ffiffi
3
p S0

ffiffiffi
3
p

DQ D

Singh et al. [63] P̄ ḡ m̄ t̄

Chen [64] S2
1ffiffi
3
p DS

Tjipto-Margo & Evans [65] <F1>
ffiffi
3
p

2
SF2T

ffiffi
3
p

2
SF3T <F4>

Yim, Gilson [66] S33
1ffiffi
3
p S11{S22ð Þ

Hołyst & Poniewierski [35] <Q00> <Q02> <Q20> <Q22>

Baalss [51] a1
1ffiffi
3
p a1z2a2ð Þ

ffiffiffi
3
p

b1 2b22b1

Mulder [30] y2,00 y2,02 y2,20 y2,22

Bergersen et al. [67], [50] Q 1ffiffi
3
p D 1ffiffi

3
p P 1

3
C

Dunmur et al. [68] Q
S0

Pffiffi
3
p

S0

Stroobants & Lekkerkerker [69] S
ffiffi
3
p

2
D

Goldfarb et al. [70] C00

ffiffiffi
2
p

C
02

ffiffiffi
2
p

C
20

4C
22

Collings et al. [71] S1 +
ffiffi
3
p

2
S2 +

ffiffi
3
p

2
S4

S5

Photinos et al. [72] S0,0 + 2ffiffi
3
p S0, 2 + 2ffiffi

3
p S2, 0 2S2,2

Luckhurst et al. [5]
d

2ð Þ
0, 0

ffiffiffi
2
p

d
2ð Þ

0, 2 cos 2c

Straley [19] S {
ffiffi
3
p

2
U {

ffiffi
3
p

2
T V

Priest & Lubensky [73] S 1ffiffi
3
p g0

ffiffi
3
p

2
D 2g

Alben et al. [74] S̄ { 1ffiffi
3
p D
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arrive at

a~S{e
Uffiffiffi

3
p and b~eF{

ffiffiffi
3
p

P,

so that a is the only non-vanishing parameter in a

uniaxial phase.

The order parameters employed in [77] are closely
related to that introduced by Alben [79], who defined a

molecular tensor

Qm :~n6n{m6m,

where n is a unit vector along the longest axis of the

molecule, and m is a unit vector normal to the molecule,
conceived as a rectangular plate; in our notation

Qm~m36m3{m16m1~

ffiffiffi
3

2

r
M0{

1ffiffiffi
2
p M1:

The tensor Qm is then averaged to obtain a tensor Qav,

which is then expressed in terms of polar coordinates in
the parameter space. Using the procedure of Section 3,

we can obtain two order parameters defined as

Qav
:L0~SQmT:L0~

ffiffiffi
3

2

r
S{

1ffiffiffi
3
p U

� �

and

Qav
:L1~SQmT:L1~

ffiffiffi
3

2

r
P{

1ffiffiffi
3
p F

� �
:
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Appendix A

Euler angles

Euler angles are a popular way to parametrize

rotations. As noted by Goldstein [53], some degree of

arbitrariness is unavoidably hidden in their definition

since ‘the sequence of rotations used to define the final

orientation of the coordinate system is to some extent

arbitrary. The initial rotation could be taken about any

of the three Cartesian axes. In the subsequent two

rotations, the only limitation is that no two successive

rotations can be about the same axis’ (p. 147 of [53]). As

a result, twelve different notations could in principle

exist. The most used notations are the x-notation

employed by Goldstein himself in [53] and the y-

notation employed by Brink and Satchler [22] and by

Rose [25]. These notations differ in the choice of the

axis about which the second rotation is performed:

while in the x-notation this is performed about the

nodal line which coincides with the intermediate x-axis,

in the y-notation the second rotation is performed

about the intermediate y-axis. Different symbols for the

same set of Euler angles also exist. Goldstein uses

Q g [0, 2p] for the angle of precession, q g [0, p] for the

angle of nutation, and y g [0, 2p] for the angle of proper

rotation (see figure 1). However Q and y are often

interchanged4 (see Leimanis’s monograph [80], where

the x-notation is adopted). Books oriented to quantum

mechanics systematically avoid use of y as an Euler

angle, since y is universally used for wavefunctions. In

fact, Brink and Satchler [22] and Rose [25] use the set (a,

4 In this respect, a discrepancy exists between figure 2 and
table 1 of [58]. In fact, in figure 2 of [58] and in the matrix aab

of equation (3) on p. 88 of [58], Q denotes the proper rotation
and y is the angle of precession. On the other hand, the angle
of proper rotation is denoted by y in table 1 on p. 95 of [58],
otherwise it would not be possible to define the order
parameter P, since the angle of proper rotation is
meaningless for uniaxial molecules in a biaxial phase (see
Section 3).
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b, c) where a is the angle of precession, b the angle of

nutation, and c the angle of proper notation.

To pass from the x- to the y-notation, the following

equivalence should be used ([53], p. 606):

Qx~Qyz
p

2
, yx~yy{

p

2
ð21Þ

where Qx and yx are the angle of precession and of

proper rotation, respectively, in the x-notation, while
Qy and yy are their counterparts in the y-notation. It

should also be noted that, instead of performing

rotations about moving axes – like in [53], figure 3 on

p. 50 of [25], and figure 2 on p. 20 of [22] – both Rose

and Brink and Satchler note that the same effect can

be obtained by performing three rotations about fixed

axes, provided that the angles are reversed. That is, in

the y-notation, first a rotation about the original z-axis

through an angle c, then a rotation about the original

y-axis through an angle b followed by a rotation

through an angle a about the original z-axis (see also

[81]).

Most authors concerned with biaxial liquid crystals

adopt the y-notation, but there are notable exceptions.

In particular, Straley’s paper [19] clearly uses the x-

notation, as he refers to p. 107 of Goldstein’s 1950

edition [82] where this notation is discussed. It is also

clear from Straley’s choice of the order parameters for

the uniaxial phase (Section IV of [19]) that y is the angle

of pure rotation. The x-notation is also used by Palffy-

Muhoray and Hoatson [50] and by Baals [51]. It is

worth noting that this fact has sometimes been over-

looked by authors using the y-notation, when they

compare their order parameters with Straley’s; see [65]

and [67].
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